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Comments on “Finite-Element Analysis of Waveguide
Modes: A Novel Approach
That Eliminates Spurious Modes”

Michat Mrozowski

One of the drawbacks of the finite-element analysis of wave-
guiding structures is that it often yields nonphysical solutions,
which are called spurious modes. In the above paper! a novel
formulation of the finite element method is presented which
allows one to readily identify proper modes. The approach is
based on the variational expression of the propagation constant
involving transverse electric and magnetic field components.
The following generalized eigenvalue problem is obtained from
the stationary condition:

P, (1)

®| =

g2=

The eigenvalues 1/8 of the above problem are the reciprocals
of the propagation constants of the modes supported by the
structure under investigation. In general, the eigenvalues of
problem (1) can be complex numbers. To identify guided modes
only real eigenvalues are selected. All eigenvalues equal to zero
and those having nonzero imaginary parts are attributed by the
authors (see subsection IV-A) to “definitely nonphysical spuri-
ous-mode solutions.” This conclusion cannot fully be accepted
because a nonzero imaginary part of the propagation constant
does not necessarily mean that the eigensolution is nonphysical.

1) In addition to guided modes, each guide may support an
infinite number of higher order cutoff modes which have
purely imaginary propagation constants. At least some of
the solutions referred to by the authors as nonphysical
could in fact have been cutoff waves.

2) Guides containing anisotropic or inhomogeneous isotropic

~media may support, even in the lossless case, complex
waves [1], i.e., modes with complex propagation constants.
Complex waves are physically admissible solutions and
their omission in the discontinuity analysis may lead to
serious errors [2]. Incidently, for a rectangular guide with
one-dimensional inhomogeneity discussed in subsection
IV-A of the paper, no complex waves are allowed. Thus for
this case the solutions with complex eigenvalues might
have actually been spurious, but one has to bear in mind
that eigenvalues with a small real part compared with the
imaginary part (type 3 in Table I in the paper in question)
could also be due to round-off errors, especially in iil-con-
ditioned problems. Problem (1) is ill-conditioned as matrix
Q is singular,
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Concluding, the formulation proposed in the paper seems to
enable one to identify guided modes with real propagation
constants but care has to be taken when attributing the eigenval-
ues having a nonzero imaginary part to spurious modes.

Reply? by Tuptim Angkaew, Masanori Matsuhara,
and Nobuaki Kumagai’

Using the variational method, we derived equation (15) in our
paper on the assumptions that the permittivity and permeability
tensors are Hermite ‘tensors and that the propagation constant
B is real. Therefore, any solution to (15) with a nonreal propaga-
tion constant does not conform to these assumptions, and we
select only solutions with real propagation constants.

However using the Galerkin method or weak formulation,
(15) may be derived without the assumptions made in our paper.
In this case, certain solutions with nonreal propagation con-
stants correspond to the evanescent modes and the modes with
loss or gain. These are reported in [3].
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Comments on “An Exact Solution for the
Nonuniform Transmission Line Problem”

Smain Amari

As the author of the above paper! points out in his introduc-
tion, this problem has been solved within certain approxima-
tions. A limitation of these methods is the fact that some
parameters of the line do not vary independently. It is exactly
this kind of interdependence between the impedance and admit-
tance that limits the form of lines to which the present solution
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applies. The voltages and the currents are assumed to satisfy the
following equations:

Vi(x)=—-Z(x)I(x) (1)
I'(x)=-Y(x)V(x). 2)

These equations can be written in a matrix form, as in eq. (3) of
the paper in question, the solution to which is claimed to be

W(x) =exp{fx:A(t)dt}WO 3)

where W(x) is a column vector with components V(x) and I(x),

and A(x) is a 2X 2 matrix. It should be pointed out at this point
that this is true only if the matrix satisfies the following condi-
tion; the matrices A(x;) and A(x,) must commute for all x,
and x,. To see this, we expand the exponential in its power
series (since this is how a function of an operator is defined) to
obtain

x * 1 x "
o [awa= T ={[awal. @

Differentiating this series with respect to x (up to second term
for clarity), we get

(A faas fanaac)+ . o

It is clear that (5) reduces to (3) only if the matrix A(x) satisfies
the following condition:

A(x)A(y) = A(y)A(x) =0 (6)

or, equivalently, that the ratio Z(x)/ ¥(x) be a constant inde-
‘pendent of the position x. Furthermore, the generalization of
the stated theorem as presented by the author applies only to
matrices satisfying this condition. A constant matrix obviously
satisfies condition (6). For matrices which do not satisfy this
condition, the transition from eq. (7) to egs. (9) and (10) in
Nwoke’s paper cannot be made. To see this, we perform a
similarity transformation which diagonalizes the matrix A(x).
Of course this similarity transformation is dependent on x since
the eigenvectors of the matrix A(x) are position-dependent.
Multiplying both sides of Nwoke’s eq. (7) by P(x)~! from the
left and P(x) from the right, we get

A(x)+

P(x)_lexp{/;xA(t)dt}P(x)=a+B()\(x)). (7)

In this equation P(x) is a 2X2 matrix whose columns are the
components of eigenvectors of A(x), and A(x) is a diagonal
2X2 matrix whose diagonal elements are the eigenvalues of
A(x). In order for the left-hand side of this equation to be equal
to that in egs. (9) and (10) in the paper in question, the matrix
P(x) must diagonalize the matrix 4(y) for arbitrary values of x
and y. This can be seen by expanding the exponential in its
power series and trying to reduce each term in the series to a
diagonal form. Thus we obtain the following condition on Z(x)
and Y(x).

Z(x)/Y(x)=constant =Z(x,)/ Y(x,). (8)

Finally, note that eqs. (14) and (15) do not satisfy egs. (1) and (2)
in Nwoke’s paper unless this condition is met. The appendix
carries out this verification but this condition was implicitly
assumed in getting this result. Also the solutions to the given
examples do not satisfy eqs. (1) and (2), as can be seen by direct
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differentiation. For lines satisfying this condition, the method is
an clegant one. The solution to the general case where Z(x)
and Y(x) are not related is very complex and involves an infinite
ordered series in the matrix A(x). To be explicit, the general
solution to egs. (1) and (2) in Nwoke’s paper can be written
formally as

(x)=Xexp [ A(1)dt (9)

where the operator X orders a product A(x,)A(x,)--- A(x,),
the arguments x, appearing in ascending order from right to
left. For a more detailed discussion standard books on quantum
field theory or quantum many-body theory may be consulted, for
example [1]. A perturbation expansion may be fruitful for prob-
lems where the series (which is known in quantum field theory
as the Dyson series) converges.
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Comments on “TE and TM Modes of Some
Triangular Cross-Section Waveguides
Using Superposition
of Plane Waves”

Jingjun Zhang and Junmei Fu

In the above paper,! Overfelt and White found the exact
transverse electric and magnetic mode solution of four triangu-
lar cross-section waveguides: 1) equilateral; 2) 30°, 30°, 120°
3) isosceles right; and 4) 30°, 60° right triangular. But the work of
Prof. Lin Weigan some years ago [1] should not be neglected.
His results for 30°,60° right triangular waveguides are as follows.

With the coordinate system in Fig. 1 with a 30° angle at the
origin, for TE modes,

o lmx  (m—n)my © oo T (n—-Dmy
= ¢0s — COS cos cos
z a V3a V3a
nwx l—m)mr
+cos cos( ) y’ l+m+n=0.
V3a

The cutoff wavenumbers for the TE modes are

2
kC=—‘n'—\/m2+mn+n2
V3a
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